Science Education - the same criticisms for over a century Mar 28th 2012, 11:27 Escaping the rhetoric of "the past" in science education « Boundary Vision Quote: Science students are rarely exhorted to question the present state of scientific knowledge. Somehow, it appears that boys and girls learn to accept the dogmatic assertions of teachers and textbooks. In the sense that all scientific data and conclusions are tentative, such acceptance is truly antiscientific. Every high-school science student should have an opportunity to explore at least one conceptual scheme so intensively that he begins to sense the limitations of what we know and observe about natural phenomena. He should understand that it is always proper to ask within what limits of error science data or concepts are accepted as correct. | Entry author McShanahan noted Quote: This morning I went to do the same thing with the quote above. It's from an old teacher education textbook called Quality Science for Secondary Schools published in 1960. In the midst of typing though, I paused, starting to feel like my comments were the same for almost all of the quotes: Arguments about good science education don't seem to change, regardless of the year they were written. | Another quote: Quote: There is no part of the country where in summer you cannot get a sufficient supply of the best specimens. Take your text from the brooks, not from the booksellers. It is better to have a few forms well known than to teach a little about many hundred species. | McShanahan noted that this was from 1888. Its author was David Starr Jordan, former president of Stanford University and a student of Louis Agassiz, who had famously counseled "study nature not books". Old school science education « The Scientific Teacher Has some nice quotes from Thomas Henry Huxley, one of Charles Darwin's associates, from On the educational value of the natural history sciences and Science education: notes of an after-dinner speech: Quote: Science is, I believe, nothing but trained and organised common sense, differing from the latter only as a veteran may differ from a raw recruit: and its methods differ from those of common sense only so far as the guardsman's cut and thrust differ from the manner in which a savage wields his club….The man of science, in fact, simply uses with scrupulous exactness the methods which we all, habitually and at every moment, use carelessly. I doubt whether any toy would be so acceptable to young children as a vivarium of the same kind as, but of course on a smaller scale than, those admirable devices in the Zoological Gardens. As I have already said, a child seeks for information about matters of physical science as soon as it begins to talk. And if not snubbed and stunted by being told not to ask foolish questions, there is no limit to the intellectual craving of a young child; nor any bounds to the slow, but solid, accretion of knowledge and development of the thinking faculty in this way. I do not mean that every schoolboy should be taught everything in science. That would be a very absurd thing to conceive, and a very mischievous thing to attempt. What I mean is, that no boy nor girl should leave school without possessing a grasp of the general character of science, and without having been disciplined, more or less, in the methods of all sciences; so that, when turned into the world to make their own way, they shall be prepared to face scientific problems, not by knowing at once the conditions of every problem, or by being able at once to solve it; but by being familiar with the general current of scientific thought, and by being able to apply the methods of science in the proper way, when they have acquainted themselves with the conditions of the special problem. If the great benefits of scientific training are sought, it is essential that such training should be real: that is to say, that the mind of the scholar should be brought into direct relation with fact, that he should not merely be told a thing, but made to see by the use of his own intellect and ability that the thing is so and no otherwise. But if scientific training is to yield its most eminent results, it must, I repeat, be made practical. That is to say, in explaining to a child the general phænomena of Nature, you must, as far as possible, give reality to your teaching by object-lessons; in teaching him botany, he must handle the plants and dissect the flowers for himself; in teaching him physics and chemistry, you must not be solicitous to fill him with information, but you must be careful that what he learns he knows of his own knowledge. Don't be satisfied with telling him that a magnet attracts iron. Let him see that it does; let him feel the pull of the one upon the other for himself. And, especially, tell him that it is his duty to doubt until he is compelled, by the absolute authority of Nature, to believe that which is written in books. | That is, have direct experience be a part of science education. The science education reform agenda hasn't changed in a century : Thoughts from Kansas by Joshua Rosenau of the the National Center for Science Education Quote: Shanahan's point is well-taken, though, that there are various structural reasons why we teach science how we do. It's hard to stick to a standardized curriculum if you're having students design their own experiments, or if you encourage students to explore the outdoors in a relatively free manner. The need to cover specific topics can require narrowing the scope of these investigations, pushing lab exercises away from the (often unpredictable) practice of hypothesis-generation and hypothesis testing toward duller but more controllable lab demonstrations, or cookbook experiments where the teacher knows that a right answer exists and knows what it is. Similarly, the rising importance of standardized testing and the use of these tests (and the statewide standards they're based on) to hold teachers and schools accountable encourages rote learning. While I'll grant that it's surely possible to devise tests which assess a student's ability to develop a hypothesis and design and experiment to test it and to evaluate the results, it's far cheaper and easier to administer and score multiple choice tests focusing on retention of certain factoids from textbooks. If that is the sort of learning we reward, that's the sort of teaching we can expect. | | |
No comments:
Post a Comment
Note: only a member of this blog may post a comment.